BITS Pilani

  • Page last updated on Tuesday, October 11, 2022

Publications

banner
Publications

Publications

Paper Published:

 

1. Sharma, M. D.; Basu, M. Nanosheets of In2S3/S-C3N4-Dots for Solar Water-Splitting in Saline Water. Langmuir(Just Accepted).

2.  Sharma, M. D.; Basu, M. CdIn2.2Sy Nanosheet-Based Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Nano Materials 2022, 5, 7811-7821.

3.     Sharma, M. D.; Mahala, C.; Modak, B.; Pande, S.; Basu, M. Doping of MoS2 by “Cu” and “V”: An Efficient Strategy for the Enhancement of Hydrogen Evolution Activity. Langmuir 2021, 37, 4847-4858.

4.     Sharma, M. D.; Mahala, C.; Basu, M. Vertically Grown Cd-ZnIn2.2Sy Nanosheets for

Photoelectrochemical Water Splitting. ACS Applied Nano Materials 2021, 4, 3013-3021.

5.     Sharma, M. D.; Mahala, C.; Basu, M. Photoelectrochemical Water Splitting by In2S3/In2O3 Composite Nanopyramids. ACS Applied Nano Materials 2020, 3, 11638-11649.

6.     Rathore, D.; Sharma, M. D.; Sharma, A.; Basu, M.; Pande, S. Aggregates of Ni/Ni(OH)2/NiOOH Nanoworms on Carbon Cloth for Electrocatalytic Hydrogen Evolution. Langmuir 2020, 36, 14019-14030.

7.     Mahala, C.; Sharma, M. D.; Basu, M.  Type-II Hetreostructure of ZnO and Carbon Dot Demonstrates Enhanced Photoanodic Performance in Photoelectrochemical Water-splitting. Inorganic Chemistry 2020, 59, 6988-6999.

8.  Sharma, M. D.; Mahala, C.; Basu, M. 2D Thin Sheet Heterostructures of MoS2 on MoSe2 as Efficient Electrocatalyst for Hydrogen Evolution Reaction in Wide pH Condition. Inorganic Chemistry 2020, 59, 4377-4388.

9.     Sharma, M. D.; Mahala, C.; Basu, M. Sensitization of Vertically Grown ZnO 2D Thin Sheets by MoSx for Efficient Charge Separation Process Towards Photoelectrochemical Water Splitting Reaction. Int. J. Hydrog. Energy 2020, 45, 12272-12282.

10. Mahala, C.; Sharma, M. D.; Basu, M.  Nanosheets of ZnO/C3N4-QDs Function as an Efficient Photoanode in Photoelectrochemical Water Splitting. ACS Applied Nano Materials, 2020, 3, 1999-2007.

11. Mahala, C.; Sharma, M. D.; Basu, M. Near-field and Far-field Plasmonic Effect of Au Nanoparticles on Enhancement of Solar Water-splitting Performance of 2D Nanosheets of ZnO. ACS Applied Nano Materials, 2020, 3, 1153-1165.

12. Sharma, M. D.; Mahala, C.; Basu, M. Band Gap Tuning to Improve the Photoanodic Activity of ZnInxSy for Photoelectrochemical Water Oxidation. Catalysis Science & Technology, 2019, 9, 6769-6781.

13. Mahala, C.; Sharma, M. D.; Basu, M. Hollow Core@Shell Structure of Co3O4@Co3S4 Function as an Efficient Oxygen Evolution Catalyst. New J. Chem., 2019, 43, 15768-15776.

14. Basu, M. Porous Cupric Oxide: Efficient Photocathode for Photoelectrochemical water splitting. ChemPhotoChem, 2019, 3, 1254-1262.

15. Mahala, C.; Sharma, M. D.; Basu, M. Fe Doped Nickel Hydroxide/Nickel Oxyhydroxide Function as an Efficient Catalyst for Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 3488-3498.

16. Sharma, M. D.; Mahala, C.; Basu, M. Shape-Controlled Hematite: An Efficient Photoanode for Photoelectrochemical water splitting. Ind. Eng. Chem. Res., 2019, 58, 7200-7208.

17. Mahala, C.; Sharma, M. D.; Basu, M. ZnO@CdS Heterostructure: An Efficient Photoanode for Photoelectrochemical Water Splitting. New J. Chem. 2019, 43, 7001-7010.

18. Sharma, M. D.; Mahala, C.; Basu, M. AgPd Alloy Nanoparticles Decorated MoS2 2D Nanosheets: Efficient Hydrogen Evolution Catalyst in Wide pH Condition. ChemistrySelect 2019, 4, 378-386.

19. Sharma, M. D.; Mahala, C.; Basu, M. Nanosheets of MoSe2@M (M= Pd and Rh) Function as Widespread pH Tolerable Hydrogen Evolution Catalyst. J. Colloid Interface Sci., 2019, 534, 131-141.

20. Basu, M. Nanotubes of NiCo2S4/Co9S8 Hetero-structure: Efficient Hydrogen Evolution Catalyst in Alkaline Medium. Chem. Asian J. 2018, 13, 3204 – 3211.

21. Basu, M. In-situ developed Carbon Spheres Function as Promising Support for Enhanced Activity of Cobalt Oxide in Oxygen Evolution Reaction. J. Colloid Interface Sci., 2018, 530, 264-273.

22. Mahala, C; Sharma, M. D.; Basu, M. 2D Nanostructures of CoFe2O4 and NiFe2O4: Efficient Oxygen Evolution Catalyst. Electrochim. Acta, 2018, 273, 462-473.

23. Fageria, P.; K.Y. Sudharshan, Nazir, R.; Basu, M.; Pande, S. Decoration of MoS2 on g-C3N4 surface for efficient hydrogen evolution reaction. Electrochim. Acta, 2017, 258, 1273-1283.          

24. Mahala, C; Basu, M. Nanosheets of NiCo2O4/NiO as Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Omega, 2017, 2, 7559-7567.

25. Nazir, R.; Fageria, P.; Basu, M.; Gangopadhyay, S.; Pande, S. Decoration of Pd and Pt nanoparticles on a carbon nitride (C3N4) surface for nitro-compounds reduction and hydrogen evolution reaction. New J. Chem. 2017, 41, 9658-9667.

26. Nazir, R.; Fageria, P.; Basu, M.; Pande, S. Decoration of Carbon Nitride Surface with Bimetallic Nanoparticles (Ag/Pt, Ag/Pd, and Ag/Au) via Galvanic Exchange for Hydrogen Evolution Reaction. J. Phys. Chem. C, 2017, 121,19548–19558.

27. Basu, M.; Nazir, R.; Mahala, C.; Fageria, P.; Chaudhary, S.; Gangopadhyay, S.; Pande, S. Ag2S/Ag Heterostructure: A Promising Electrocatalyst for the Hydrogen Evolution Reaction. Langmuir, 2017, 33, 3178-3186.

28. Fageria, P.; Uppala, S.; Nazir, R.; Gangopadhyay, S.; Chang, C-H.; Basu, M.; and Pande, S. Synthesis of Monometallic (Au and Pd) and Bimetallic (AuPd) Nanoparticles Using Carbon Nitride (C3N4) Quantum Dots via the Photochemical Route for Nitrophenol Reduction. Langmuir, 2016, 32, 10054–10064.

29. Basu, M.; Nazir, R.; Fageria, P.; Pande, S. Construction of CuS/Au Heterostructure through a Simple Photoreduction Route for Enhanced Electrochemical Hydrogen Evolution and Photocatalysis. Scientific Reports, 2016, 6, 34738.

30. Chen, C-J.; Yang, K-C.; Basu, M.; Lu, T-H.; Lu, Y-R.; Dong, C-L.; Hu, S-F.; Liu, R-S. Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution. ACS Appl. Mater. Interfaces, 2016, 8, 5400–5407.

31. Basu, M.; Zhang, Z. W.; Chen, C. J.; Lu, T-Z.; Hu, S.F.; Liu, R-S. CoSe2 grafted in C3N4 function as efficient photocathode for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces, 2016, 8, 26690-26696.

32. Chen, C-J.; Chen, P-T.; Basu, M.; Lu, Y-R.; Dong, C-L.; Ma, C-G.; Shen, C-C.; Hu, S-F.; Liu, Ru-Shi. An integrated cobalt disulfide (CoS2) co-catalyst passivation layer on silicon microwires for photoelectrochemical hydrogen evolution. J. Mater. Chem. A, 2015, 3, 23466-23476.

33. Lu, T-Z.; Chen, C-J.; Basu, M.; Ma, C-J.; Liu, R-S. CoTe2 nanostructure: An efficient and robust hydrogen evolution catalyst. Chem. Commun., 2015,51, 17012-17015.

34. Basu, M.; Zhang, Z. W.; Chen, C. J.; Chen, P-T.; Yang, K-C.; Ma, C-G.; Lin, C. C.; Hu, S.F.; Liu, R-S. Heterostructure of Si and CoSe2: Promising Photocathode Based on Non-noble Metal Catalyst for Photoelectrochemical Hydrogen Evolution. Angew. Chem. Int. Ed. 2015, 54, 6211–6216.

35. Chen, C-J.; Chen, M-G.; Chen, C. K.; Wu, P. C.; Chen, P-T.; Basu, M.; Hu, S-F.; Tsai, D. P.; Liu, R-S. Ag-Si artificial microflowers for plasmon-enhanced solar water splitting. Chem. Commun. 2015, 51, 549-552.  

36. Garg, N.; Basu, M.; Ganguli, A. K. Nickel Cobaltite Nanostructures with Enhanced Supercapacitance Activity. J. Phys. Chem. C, 2014 118, 17332–17341.

37. Basu, M.; Garg, N.; Ganguli, A. K. A type-II semiconductor (ZnO/CuS Heterostructure) for visible light photocatalysis J. Mater. Chem. A, 2014, 2, 7517-7525.

38. Garg, N.; Basu, M.; Ganguli, A. K. Size dependent electrocatalysis and magnetization of NiCo2O4 nanostructures. RSC Adv., 2013, 3, 24328–24336.

39. Kumar, B.; Saha, S.; Basu, M.; Ganguli, A. K. Enhanced hydrogen/oxygen evolution and stability of nanocrystalline (4–6 nm) copper particles. J. Mater. Chem. A, 2013, 1, 4728-4735.

40. Sinha, A. K.; Basu, M.; Sarkar, S.; Pradhan, M.; Pal, T. Synthesis of Gold Nanochains via Photocativation Technique and their Catalytic Applications. J. Colloid Interface Sci., 2013, 15, 13-21.

41. Basu, M.; Sinha, A. K.; Pradhan, M.; Sarkar, S.; Pal, A.; Mondal, C.; Pal, T. Methylene Blue–Cu2O Reaction Made Easy in Acidic Medium. J. Phys. Chem. C, 2012, 116, 25741–25747.

42. Sarkar, S.; Pradhan, M.; Sinha, A. K., Basu, M.; Pal, T. Selective and Sensitive Recognition of Cu2+in an Aqueous Medium: A Surface-Enhanced Raman Scattering (SERS)-Based Analysis with a Low Cost Raman Reporter. Chem. Eur. J., 2012, 18, 6335-6342.

43. Basu, M.; Sinha, A. K.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Pal, T. Fabrication and Functionalization of CuO for Tuning Superhydrophobic Thin Film and Cotton Wool. J. Phys. Chem. C, 2011, 115, 20953-20963.

44. Manna, P. K.; Yusuf, S. M.; Basu, M.; Pal, T. The magnetic proximity effect in a ferrimagnetic Fe3O4 core/ferrimagnetic-Mn2O3 shell nanoparticle system. J. Phys.: Condens. Matter., 2011, 23, 506004 (10pp).

45.  Basu, M.; Pradhan, M.; Sinha, A. K.; Sarkar, S.; Pal, T. CuO Barrier Limited Corrosion of Solid Cu2O Leading to Preferential Transport of Cu(I) ion for Hollow Cu7S4 Cube Formation J. Phys. Chem. C, 2011, 115, 12275-12282.

46. Pradhan, M.; Sarkar, S.; Sinha, A. K.; Basu, M.; Pal, T. Morphology controlled uranium oxide hydroxide hydrate for catalysis, luminescence and SERS studies. CrystEngComm, 2011, 13, 2878-2889.

47. Sinha, A. K.; Basu, M.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Pal, T. Redox-Switchable Superhydrophobic Silver Composite. Langmuir, 2011, 27, 11629-11635.

48. Pradhan, M.; Basu M.; Sarkar, S.; Sinha, A. K.; Pal, T. Solvent effect on the optical property of uranyl acetylacetonate monohydrate. Spectrochim. Acta, Part A: Molecular and Biomolecular Spectroscopy, 2011, 78A, 205-210.

49.  Sarkar, S.; Sinha, A. K.; Pradhan, M.; Basu, M.; Negishi, Y.; Pal, T. Redox Transmetalation of Prickly Nickel Nanowires for Morphology Controlled Hierarchical Synthesis of Nickel/Gold Nanostructures for Enhanced Catalytic Activity and SERS Responsive Functional Material. J. Phys. Chem. C2011, 115, 1659-1673.

50.  Basu, M.; Sinha, A. K.; Pradhan, M.; Sarkar, S.; Pal, A.; Pal, T. Monoclinic CuO nanoflowers on resin support: recyclable catalyst to obtain perylene compound. Chem Commun., 201046, 8785-8787.

51. Basu, M.; Sinha, A. K.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Govind, Pal, T. Evolution of Hierarchical Hexagonal Stacked Plates of CuS from Liquid-Liquid Interface and its Photocatalytic Application for Oxidative Degradation of Different Dyes under Indoor Lighting.  Env. Sci. Technol., 2010, 44, 6313-6318.

52. Basu, M.; Sinha, A. K.; Sarkar, S.; Pradhan, M.; Yusuf, S. M.; Negishi, Y.; Pal, T. Hierarchical Superparamagnetic Magnetite Nanowafers from a Resin-Bound [Fe(bpy)3]2+ Matrix. Langmuir2010, 26, 5836-5842.

53. Sinha, A. K.; Basu, M.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Pal, T. Thermodynamic and Kinetics Aspects of Spherical MnO2 Nanoparticle Synthesis in Isoamyl Alcohol: An Ex Situ Study of Particles to One-Dimensional Shape Transformation. J. Phys. Chem. C2010, 114, 21173-21183.

54. Sinha, A. K.; Basu, M.; Sarkar, S.; Pradhan, M.; Pal, T. Electrostatic Field Force Directed Gold Nanowires from Anion Exchange Resin Langmuir, 2010, 26, 17419-17426.

55. Sinha, A. K.; Basu, M.; Pradhan, M.; Sarkar, S.; Pal, T. Fabrication of Large-Scale Hierarchical ZnO Hollow Spheroids for Hydrophobicity and Photocatalysis. Chem. A Eur. J2010, 16, 7865-7874.

56. Pradhan, M.; Sarkar, S.; Sinha, A. K.; Basu, M.; Pal, T. High-Yield Synthesis of 1D Rh Nanostructures from Surfactant Mediated Reductive Pathway and their Shape Transformation. J. Phys. Chem. C, 2010, 114, 16129-16142.

57. Sarkar, S.; Pradhan, M.; Sinha, A. K.; Basu, M.; Pal, T. Chelate Effect in Surface Enhanced Raman Scattering with Transition Metal Nanoparticles.  J. Phys. Chem Lett., 2010, 1, 439-444.

58. Sarkar, S.; Pradhan, M.; Sinha, A. K.; Basu, M.; Negishi, Y.; Pal, T. An aminolytic approach toward hierarchical β-Ni(OH)2 nanoporous architectures: a bimodal forum for photocatalytic and surface-enhanced Raman scattering activity. Inorg. Chem. 2010, 49, 8813-8827.

59. Jana, S.; Pande, S.; Sinha, A. K.; Sarkar, S.; Pradhan, M.; Basu, M.; Negishi, Y.; Pal, A.; Pal, T. Layer-by-Layer Deposition of Silver/Gold Nanoparticles for Catalytic Reduction of Nitroaromatics. J. Nanosci. Nanotechnol., 2010, 10, 847-859.

60. Basu, M.; Sarkar, S.; Pande, S.; Jana, S.; Sinha, A. K.; Sarkar, S.; Pradhan, M.; Pal, A.; Pal, T. Hydroxylation of benzophenone with ammonium phosphomolybdate in the solid state via UV photoactivation. Chem Commun., 2009, 46, 7191-7193.

61. Pande, S.; Jana, S.; Sinha, A. K.; Sarkar, S.; Basu, M.; Pradhan, M.; Pal, A.; Chowdhury, J.; Pal, T. Dopamine Molecules on Au-core-Ag-shell Bimetallic Nanocolloids: Fourier Transform Infrared, Raman, and Surface-Enhanced Raman Spectroscopy Study Aided by Density Functional Theory. J. Phys. Chem. C2009, 113, 6989-7002.

62. Sarkar, S.; Pande, S.; Jana, S.; Sinha, A. K.; Pradhan, M.; Basu, M.; Saha, S.; Yusuf, S. M.; Pal, T. Room Temperature Ferromagnetic Ni Nanocrystals: An Efficient Transition Metal Platform for Manifestation of Surface-Enhanced Raman Scattering. J. Phys. Chem. C2009, 113, 6022-6032.

63. Jana, S.; Pande, S.; Sinha, A. K.; Sarkar, S.; Pradhan, M.; Basu, M.; Saha, S.; Pal, T. A Green Chemistry Approach for the Synthesis of Flower-like Ag-Doped MnO2 Nanostructures Probed by Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C, 2009, 113,1386–1392.

64. Sinha, A. K.; Jana, S.; Pande, S.; Sarkar, S.; Pradhan, M.; Basu, M.; Saha, S.; Pal, A.; Pal, T. New hydrothermal process for hierarchical TiO2 nanostructures CrystEngComm, 2009, 11, 1210-1212.

65. Sarkar, S.; Pande, S.; Jana, S.; Sinha, A. K.; Pradhan, M.; Basu, M.; Chowdhury, J.; Pal, T. Exploration of Electrostatic Field Force in Surface-Enhanced Raman Scattering: An Experimental Investigation Aided by Density Functional Calculations. J. Phys. Chem. C2009, 112, 17862-17876.

66. Pande, S.; Saha, A.; Jana, S.; Sarkar, S.; Basu, M.; Pradhan, M.; Sinha, A. K.; Saha, S.; Pal, A.; Pal, T. Resin-Immobilized CuO and Cu Nanocomposites for Alcohol Oxidation. Org. Lett., 2008, 10, 5179–5181.

67. Pande, S.; Sarkar, A. K.; Basu, M.; Jana, S.; Sinha, A. K.; Sarkar, S.; Pradhan, M.; Saha, S.; Pal, A.; Pal, T. Gram level synthesis of lead-free solder in the nanometer length scale obtained from tin and silver compounds using silicone oil. Langmuir, 2008, 24, 8991-8997.

 

Book Chapter:

  1. Book Chapter:

Name of book: Hybrid Nanomaterials: Synthesis, Characterization and Applications

Chapter: Metal and Metal Oxide Nanostructure on Resin Support

Authors: Mrinmoyee Basu and Tarasankar pal*

WILEY (John Wiley & Sons), ISBN: 978-0-470-48760-0

  1. Nanoscience research in India: Recent contributions (2012–2013) (2013)

Ashok K. Ganguli,* Aparna Ganguly and Mrinmoyee Basu Nanoscience (RSC Publishing): Volume 2, Chapter 6 2014, 2, 139-203.

  1. Name of Book: Photoelectrochemical Generation of Fuels
    Chapter: Fundamentals of Semiconductor Photoelectrochemistry: 
    Authors: Mamta Devi Sharma, Mrinmoyee Basu*, 2022, ISBN: 9781003211761

Quick Links

    An Institution Deemed to be University estd. vide Sec.3 of the UGC Act,1956 under notification # F.12-23/63.U-2 of Jun 18,1964

    © 2025 Centre for Software Development,SDET Unit, BITS-Pilani, India.

    Designed and developed by fractal | ink design studios