
Web App for Microscopic Cell Analysis?

Sahu, Samyak1

Birla Institute of Technology and Science, Pilani, India
f20180421@pilani.bits-pilani.ac.in

Abstract. We have developed a open-source, Flask-based web applica-
tion that can be used for cell classification for medical analysis. The app
takes in the microscopic feed of a urine sample, in an image or video
format. In case of a video format, an additional layer of sharp-frame de-
tection is also done. After that, it identifies the number of type of cells.
Based on their number and relative proportion, it detects what renal
disease could the sample indicate. The application is expected to aid un-
trained staff at hospitals and infirmaries in remote villages, where there’s
a lack of expertise in interpreting and classifying various types of cells.
The application could further find its way to help doctors automate, at
least a part of, their diagnostic process – not just for urine samples, but
also for detection of other cell samples suspended in a liquid medium.

Keywords: Flask · Web Development · Deep Learning · User Experi-
ence · Accessibility · Biomedical Image Analysis

1 Introduction

The Problem Medical image analysis plays an important role in the field of
diagnosis. From X-rays to MRI scans, there are a lot of ways in which we can
examine the body from the inside and see if anything is out of order. But it is
often not required to use invasive strategies to detect anomalies in the human
body. Sometimes we can extract a sample of a bodily fluid, such as blood, urine,
sweat, saliva, mucous, semen, etc., and can predict from the portion of a whole,
the presence of any suspicious cells or any type of cells in an abnormally large
proportion. This type of diagnosis has always been more prevalent in the medical
field, primarily due to its non-invasiveness, ease of conduction, cost and safety
factors.

For higher level analyses, there’s often a need of trained professional staff.
In the Indian context, especially in remote villages and towns, it is found out
that there is a disproportionate level of false positives and false negatives coming
up due to (a) human error during sample examination and (b) miscarriage of
samples, which can lead to their contamination. Both the factors can be, in
part, attributed to the lack of trained staff in hospitals and infirmaries of remote
villages. In addition, there’s often a problem of a lack of robust infrastructure
due to economic problems.

? Supported by Medical Center, BITS Pilani.



2 Sahu, Samyak

To counter the problem with (a), as mentioned above, we have attempted
to leverage the power of Deep Learning-based image classification algorithms to
make better predictions on the type of cells and their proportions. We attempted
to build a software application around such a classification technique, that we
attempt to explain in this paper.

The Solution We built an cell classification software that is designed to be
easily accessible to be used by hospital staff in remote villages and infirmaries.
When trying to develop a software solution for such a demographic, we had to
keep in mind the following factors:

(1) Easy operation This is important so that even technologically-challenged
individuals can operate the application with ease.

(2) Eliminating the possibility of human error The central aim of this project
has been to reduce human intervention and thus eliminate, at best, or reduce,
at least, any instances of human error that lead to inaccurate diagnosis.

(3) Quick, conclusive results with a well-defined confidence interval It is natu-
rally expected of automatic systems to reduce the effort or time taken of a certain
process as much as possible. So its desirable that the results take minimal time to
process and show up. The Deep Learning algorithm used also provides us with a
confidence interval for experienced professionals to evaluate the predictions and
make an informed decision thereafter.

(4) Fully operational even with patchy or low-bandwidth network connections A
large numbers medium-to-small towns and villages still have limited access to
electricity and internet. Intermittent power cuts are a norm and 4G internet is
yet to find penetration in many areas, especially around the state of Rajasthan.
There may also arise the issue of hardware constraints with individual users.
Keeping this in mind, we had the additional constraint to design this feature-
heavy application such that there’s minimum computational dependence on the
client side. The application is designed with low bandwidth requirement, with
measures to do discussed soon after this section.

(5) Easy open-source support We wanted the project to be easily replicable and
one that could be easily improved upon. We had to keep in mind the needs to
the developers who could adopt project up, mould it and improve it according
to their needs. A lot of access points and extensive documentation had to be
provided so that developers could understand the underpinnings of the code.

Remark 1. Keeping the following challenges in mind, we started out with a thor-
ough analysis on what could be the most suitable type of application software
paradigm for our needs.



Web App for Microscopic Cell Analysis 3

2 Application Software Paradigms

There are many kinds of software architectures/paradigms available to us at
present. At the same time, new paradigms are slowly being developed by cor-
porations and research labs to improve on existing designs and provide the best
out of the pre-existing ways to build an application.

The following section attempts to analyze the type of application software
paradigms that would be best suited for our needs, on the assumption that an
increasing number of rural areas have access to mobile data-based internet, an
image capturing device (a mobile camera), a microscope and a personal computer
at one such infirmary.

2.1 Native Applications

Native applications are those types of application software which are developed
to work on a specific platform. Its form and function are greatly dependent on
the device-specific hardware and operating system.

The advantages and disadvantages of native apps are the following:

Advantages Native app structure offers many advantages such as,

Closeness to system The application’s proximity to the system allows efficient
use of system resources and maximum utilization of hardware.

Compatibility Issues around compatibility are little to none in case of native
applications, because the apps are tailored-fit for the specific platform and the
hardware used.

Disadvantages There are some disadvantages to the native app structure as
well:

Dependence on native system The dependence on the system can come off as a
disadvantage because the application’s functionality is sometimes greatly inhib-
ited by the hardware it is running on.

Inability to run cross-platform The lack of cross-platform support comes in the
way of user experience, in an age where a single user often owns multiple devices
having different form factors and operating systems.

Development-specific issues Finding platform-specific development environments
and talent to develop for some obsolete system can be a highly challenging
prospect, in time when cross-development platforms are taking the center stage.



4 Sahu, Samyak

2.2 Web Applications

To work on the shortcomings of native applications, the ubiquity of the Internet
was exploited to make web-applications, which are application software running
completely on the web.

Advantages The advantages of web applications are as follows:

Synchronizing capabilities The online hosting provides the app the liberty to be
accessed from several platforms.

Ability to collaborate Multiple users can work on the same project and thus,
effective collaboration among teams can be carried out.

Better development cycles There is a strong ecosystem of robust frameworks
available for developing web applications (one such is used in our application).
Updates can also be quickly rolled out, which ensures better iterative develop-
ment lifecycles. Agile development practices can also be effectively carried out
with these applications. [1]

Less installation dependency There is little to no need to install additional
drivers/dependencies when using web apps. They are also highly device agnostic,
that means they don’t rely much on device hardware for their performance.

Disadvantages The disadvantages in case of fully web-based application mod-
els are:

Speed and compatibility issues Since the apps are more ”distant” from the device
as compared to native applications, they are not often optimized for speed for
certain devices and operating systems. The users using obsolete ecosystems or
outdated hardware can therefore find themselves at a disadvantage here.

Dependence on ”being online” There is often the requirement of a steady inter-
net connection for the web application to work properly. The use of asynchronous
web technologies such as Ajax can limit the amount of data needed to be trans-
ferred, but an active, fast internet connection is more often than not, required.

2.3 Progressive Web Applications

Progressive Web Apps (or PWAs) were developed by Google. They represent
a unique programming paradigm which ensures strong usability on both the
server and the client side. (see Fig. 1) In essence, they are web apps which make
extensive use of browser APIs to give a native-app like experience, including the
capability to fetch system information, being installable and having partial to
complete functionality even when the user goes offline. [2]

The advantages and disadvantages of PWAs are as follows:



Web App for Microscopic Cell Analysis 5

Advantages PWAs are garnering a lot of support from the developer commu-
nity due to their advantages.

Speed PWAs are often specially optimized for speed, even with moderately poor
internet connections. The navigation of such apps is comparable to their offline,
native counterparts.

Choice of installation This is a huge advantage as it offers a great flexibility
for the user. The capability to install the app completely (or make use of some
functionalities partially) offers unprecedented reliability.

Disadvantages There are some disadvantages associated with the PWA archi-
tecture as well

Demanding quality standards The build requirements of PWAs can come in the
way of development (as they did in our project) for organizations looking for a
basic level of viability. It therefore increases development time of the application.
More often than not, web apps need to be converted to a PWA, and making a
PWA from scratch isn’t usually the path taken.

Limited Browser Support PWAs often require a Chromium-based browser to run
on.

No dedicated marketplace This could be a business/availability aspect that can
come in the way of distribution of these PWAs. Native apps often have a ”store”
from which applications for a certain system on a specific set of framework(s)
can be downloaded.

New development community The paradigm has only recently been released
which makes it hard to find developers and frameworks (other than those directly
or indirectly endorsed by Google) which are instrumental to create these PWAs.
The community around PWAs is not matured as of yet.

After thorough research, we decided to go with a web-app, with plans to go Single
Page Application (SPA) model and then to a PWA model at a later stage.

Remark 2. Having chosen the most suitable app development paradigm for our
application, we moved over to adopting the right framework to develop the ap-
plication upon.

3 Choosing the Right Framework

A web framework (WF) or web application framework (WAF) is a software
framework that is designed to support the development of web applications in-
cluding web services, web resources, and web APIs. Web frameworks provide a
standard way to build and deploy web applications on the World Wide Web. [4]



6 Sahu, Samyak

Reach
C
a
p
a
b
il
it
ie
s

Fig. 1. Capabilities v/s reach of native apps, web apps, and progressive web apps.[3]

A framework was important for our development cycle as it provides a devel-
opment template in which code elements have to be placed as per requirements.
It eliminates the need to build fundamental elements required to build a web ap-
plication from the ground up, and takes care of needs pertaining to structuring,
deployment and debugging of the application.

Here’s an in-depth analysis of the most prevalent web frameworks to develop
a web application, followed by our decision based on our development experience,
timeline of development and ease of integration with the image analysis scripts.

3.1 Angular

Angular is a TypeScript-based open-source web application framework led by the
Angular Team at Google and by a community of individuals and corporations.
[5] We decided to start off with Angular as the framework of choice for our
project, as it the most widely used web framework used for making Progressive
Web Apps.

In the process, we observed the following advantages and disadvantages.

Advantages Web development in Angular offers the following benefits:

Usage of TypeScript TypeScript, as opposed to JavaScript, is a typed language,
which allows easier checks and debugging routines, in addition to the robustness
and consistency in data usually seen in typed languages.

Robust MVC architecture With the Model-View-Controller architecture, it is
possible to isolate the app logic from the UI layer and support separation of
concerns. With Angular, the need to neatly organize the app into Model, View
and Controller often becomes a necessity.

Modularity Angular is well-known in the developer community for the ability to
import and export modules to support operation.



Web App for Microscopic Cell Analysis 7

Disadvantages There were a lot of disadvantages associated with this frame-
work as well, which led us to not use it in our project.

Tight development structure Even though it increases the modularity of code;
the development architecture is not recommended for a beginner to intermediate
front-end developer. The architecture can come in the way of some functionality.

Steep Learning Curve Slowed down the rate of development quite considerably.
The onboarding tutorials of the framework are difficult to follow for developers
lacking industry-level experience.

Large application size With all the dependencies in place, Angular apps weigh
onwards of 200MB and contain a lot of convolutions in its file tree. The architec-
ture starts failing for Machine-Learning based applications, where there already
are a lot of dependencies such as model weights and other libraries.

3.2 Vue

Vue.js (pronounced as ”view dot js”) is an open-source model–view–viewmodel
front end JavaScript framework for building user interfaces and single-page ap-
plications. [6]

Advantages Vue.js is useful in the following ways for frontend web develop-
ment:

Ease of installation As opposed to the obligatory installation requirements for
Angular (including a Command-Line Interface), the start can be as easy as
importing a JavaScript file in an HTML template.

Lightweight architecture Frontend architectures developed over Vue.js can be
very lightweight and can be effectively used for Single Page Application (SPA)
development.

Virtual DOM manipulation Finding nodes that have been changed in the virual
DOM is much faster. This way we bypass the bad performance of searching and
updating multiple nodes in a large scale application.

Disadvantages

Relevance to the project After the models were built, it was realized that the
backend integration needs a greater attention. The frontend did not require
significant DOM manipulation (because we weren’t building an SPA first)



8 Sahu, Samyak

Steep Learning Curve The learning curve was not as big as Angular, but going
through the concepts of components, routing and creating state-server commu-
nication modules and directives took away a lot of development time from the
neccesary backend development, and therefore, were prioritized out of the equa-
tion.

3.3 Django

Django is a Python-based free and open-source web framework that follows the
model-template-views architectural pattern. It is maintained by the Django Soft-
ware Foundation, an American independent organization established as a 501
non-profit. [7]

Advantages

Robustness Django is a full-fledged backend framework with a ”batteries in-
cluded” philosophy followed for maintaining a database migrations, sessions han-
dling, etc. It also has excellent scalability, accentuating its versatility even more.

Pythonic support Django supports a host of packages and all code in Django is
written in Python - which is a very user-centric, intuitive, general-purpose pro-
gramming language. That means it can extensively be used in hosting machine
learning models, create Pythonic UIs, in addition to setting up the backend of
the application.

Disadvantages

Prerequisites An understanding of the entire system is required to proceed with
working on Django, especially when short deadlines are considered.

Opinionated The framework is strongly opinionated, which gives it a monolithic
feel. [8]

Bloated for small projects Django applications can prove to extremely heavy and
bloated, especially for starters. Our use case also involved a lot of load in the form
of machine learning models and dependencies, which was hard to accomodate in
this framework.

3.4 Flask

Flask is a micro web framework written in Python. It is classified as a micro-
framework because it does not require particular tools or libraries to operate.
[9]

Advantages



Web App for Microscopic Cell Analysis 9

Lightweight structure Flask is a small library on its own which takes care of
template rendering and some database features can be used with the help of
pre-existing third-party Python libraries.

Flexibility Because there’s no fixed structure, the Flask server architecture can
is minimal and can be moulded to a project’s requirements.

Pythonic support Like Django, the code in Flask is written in lucid Python and
has a lot of community support, in addition to the hundreds of packages which
can be made use of with this framework using the Pip package manager.

Disadvantages

Lack of robustness Things can end up being very convoluted in a Flask-based
backend environment, because of Flask being a micro-framework with minimal
functionality of its own. Therefore, it is not suited for applications that need
extensive scaling.

Limited database-centric functionality It’s not suited for enterprise-level appli-
cations with complex database requirements.

Remark 3. Considering our project requirements, only a backend framework was
required. Flask was chosen as the backend framework of choice, to avoid lan-
guage asymmetry with a JavaScript-based framework (a wrapper to interact
with Pythonic machine-learning models would be used then, and it would have
involved another layer of abstraction, potentially slowing the app further). We
used simple HTML and CSS templates to avoid any additional bloats to our
frontend.

4 Application Architecture & User Flow

We proceeded with a Model-View-Controller architecture, which is a prevalent
application architecture in the software development industry.

4.1 Model-View-Controller Architecture

Model–view–controller (MVC) is a software design pattern commonly used for
developing User interface that divides the related program logic into three inter-
connected elements. This is done to separate internal representations of infor-
mation from the ways information is presented to and accepted from the user.
[11]

The user flow was thought of and prototyped on Figma. Here’s a flowchart
visualization for the same. (see Fig. 3)

The app has a common introduction page, followed by two diversions for the
image upload and video upload processes. Once the frame extraction is complete,
the input processed so far (a sharp frame ready for cell classification) takes a
common route once again. The frame is processed through for the presence of
different types of cells and a classification with confidence interval is generated.



10 Sahu, Samyak

Fig. 2. Model-View-Controller Architecture - A diagrammatic representation. [11]

Fig. 3. A (proposed) flowchart for the user flow of the application.

5 Feature Description

5.1 Image extraction

The frame extraction process takes in a video output, possibly from a microscope
feed, and extracts a sharp frame out of all the given frames in a video.

The algorithm used extracts frames from ’focusing-defocusing’ videos of mi-
croscopic cultures and uses them to create a single sharp image of objects in the
video. A multi-step focusing is often required because the cellular objects lie in
different planes of focus.

5.2 Cell classification

The cell classification step involves a sharp frame as an input be it fed manu-
ally by the expertise of the user or extracted from a video by the sharp frame
extraction algorithm as mentioned above.

A powerful image classification algorithm called YOLOv3 is being used for
object detection and classification. It is a fully convolutional neural network.
The model learns from the training images which are annotated and it predicts
and classifies the cells on unseen images by denoting bounding boxes around the
cells and labelling the class of cells. [10]



Web App for Microscopic Cell Analysis 11

6 Accessibility Considerations

The application was specifically designed keeping a specific demographic in mind
- the untrained staff in hospitals and infirmaries in and around the state of
Rajasthan, as per the problem statement given by the Medical Center, BITS
Pilani. We discussed the challenges associated with the same in section 1.2.

These are the practices we adopted to ensure a high degree of user accessibility

Language Selection A Hindi pipeline runs in parallel to the existing user flows.
These are HTML pages rewritten in Hindi, so as to ensure virtually universal
accessibility, given the state of Rajasthan has the second highest number of Hindi
speakers in the country.

Pictoral indications A number of pictoral indicators have been put where ever
neccessary, to ensure a smooth user experience. Anchoring bias was effectively
utilized to help even the most technologically-challenged users reduce their cog-
nitive load. [12]

Usage of character-based ideograms Character-based ideograms, popularly known
as emojis, were used instead of rasterized (.png, .jpg, .bmp, etc.) or vector (.svg,
.eps, .pdf, etc.) image formats.

This was done for two reasons in particular. First was, as discussed, to facili-
tate the need for plenty of images as discussed in the point above. Second, was to
reduce page load times. A static image asset (rasterized or vector) uses anywhere
between 200-500 kilobytes of storage. On the other hand, emojis are, in essence,
part of an extended UTF-8 character family, which means a modern computer
system interprets it as a character - occupying only 4 bytes in memory. This re-
duces the storage size of assets considerably (by a factor of 25000 to 62500) and
this effect grows in prominence as the number of image assets increases in the
application. This ensures faster browser load times and faster HTML rendering
by the server.

Fig. 4. A screenshot of the web app, displaying the iconography and language support



12 Sahu, Samyak

Usage of customized CSS files A UI framework such as Bootstrap or Material was
earlier thought to be an strong candidate for displaying attractive UIs. However,
due to the heavy nature of the suite, it was replaced by a single CSS file only
containing natively-created classes. This further ensured small asset size, and
hence, preventing instances of a bloated website which could reduce load times.

7 Future Scope and Implementation

Having completed with the first version of this application, we understand there
is a lot of scope of improvement. There lies a vast array of applications imaging
techniques like these could find.

We found that, during the course of this project and after it, that there can
be several ways in which we can improve this application, such as:

Login functionality for hospitals We have thought of a login functionality, which
will make it easy for each medical center to keep a record of its patients and
retrieve their reports as and when required.

Full report generation There can be a provision of generating a full-fledged report
(possibly in a PDF format) of the disease one could possibly have, along with
the confidence intervals. This report could also contain additional information
about the patient’s health history, which doctors could use effectively to monitor
their patients.

Conversion to a PWA There can be further development and the web app can
be instead deployed as a fully featured Progressive Web App. For that, a JSON
web manifest file will be created, and some service workers need to be added, in
addition to ensuring some security and speed protocols be followed.

Usage of scalable frameworks For conversion to a full-fledged PWA, more robust
and scalable frameworks need to be used, as the current file tree is not at all
opinionated, which was good for initial development but can create scalability
issues later on.

Getting on-field feedback The application hasn’t been tested out yet. Even
though serious considerations for maintaining user accessibility was taken, we
can’t be certain about its working if we don’t have feedback from the demo-
graphic it’s built for.

8 Conclusion

Medical image diagnosis is finding increasing importance in tracking diseases
early on, and preventing instances of wrongful detection due to human error. The
tools that can help us build automated software already exist and are quickly
improving, as we showed in this report. A large community of developers, could



Web App for Microscopic Cell Analysis 13

thus, address such issues and help build software that could mean the difference
of life and death for the millions of rural and suburban citizens across the country.

We attempted doing the same for our application. The source-code for the
same is available on GitHub for anyone to work and improve upon. (code repos-
itory is available at https://github.com/SamyakSahu/spasht-app)

Other than that, this project was a great learning experience in terms of
getting us exposed to the different web development technologies and popular
practices, in addition to the journey of creating a meaningful solution suited to
the unique needs of the rural and suburban population of our country.

I would also like to extend my gratitude to Dr Hariom Aggrawal, Dr Vinti
Agarwal and Dr Rajiv Gupta for mentoring me throughout the journey and giv-
ing their valuable inputs on the way. The project wouldn’t have gone nowhere
without the sincere efforts of my team members, who worked the image classifi-
cation algorithms to the shape that was used in this application.

9 Tools used

The following tools were used for the successful implementation of all the com-
ponents of the application, and also the components outside of it:

Heroku A cloud platform offering Platform-as-a-Service (PaaS). A stateless
Heroku dyno was used for hosting the application. The Heroku Command Line
Interface (CLI) will be used for all the DevOps for the application.

Figma A wireframing and prototyping application which was used to create and
finalize the application design.

GitHub A version-control and source-code management solution which makes
use of Git (a distributed version control system). The tool was handy in main-
taining multiple versions of the code, and provided backup at crucial times of
local data loss.

Creately A flowchart creating tool, which was used to visualize the application
structure. As opposed to many other tools used for this, Creately was the best
suited to do the task at hand, quickly and intuitively.

Notion Is a database-derived note-taking application, which was used to main-
tain work progress throughout the project. A Notion page would also be used
to set up a documentation page for this project, if need be.

Google Docs The online word processor from the Google Suite of business ap-
plications was used to maintain work logs in the project.

Overleaf A LaTeX document editing software which was used to create this
project report.



14 Sahu, Samyak

Visual Studio Code The open-source text editor from Microsoft, along with
special dependencies for Python, Vue, Angular and all the other tools and tech-
nologies that were used during the course of development of this application.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development
Methods: Review and Analysis, arXiv (2017), https://doi.org/1709.08439

2. Tandel, S., Jamadar, A.: Impact of Progressive Web Apps on Web App Develop-
ment, IJIRSET, Vol. 7, Issue 9 (2018) https://doi.org/10.15680

3. Web.dev - What are Progressive Web Apps? https://web.dev/what-are-pwas/
4. Web Application Framework - DocForge (archived)

https://web.archive.org/web/20150723163302/http://docforge.com/
wiki/Web application framework

5. Angular (Web Framework) - Wikipedia, https://en.wikipedia.org/wiki/ Angu-
lar (web framework)

6. Vue.js - Wikipedia, https://en.wikipedia.org/wiki/Vue.js
7. FAQ: General — Django documentation — Django

https://docs.djangoproject.com/en/dev/faq/general/
8. The Advantages and Disadvantages of Using Django

https://datafloq.com/read/advantages-and-disadvantages-of-using-django/3050
9. Foreword - Flask Documentation (0.10) https://web.archive.org/web/20171117015927/

http://flask.pocoo.org/docs/0.10/foreword
10. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement, arXiv (2018)

https://doi.org/1804.02767
11. The DCI Architecture - A New Vision of Object-Oriented Programming (2009)

https://web.archive.org/web/20090323032904/https://www.artima.com/articles/
dci vision.html

12. Benoni, D., Lavallee, L.:Growth Design: The Psychology of Design-
https://growth.design/psychology/


