
Chapter 3 

1. Dynamics of a System of Particles & 

Conservation of Momentum 

2. Concept of Centre of Mass 

3. Motion of Systems with Variable Mass 

Momentum 



Dynamics of a System of Particles & 

Conservation of Momentum 
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Dynamics of a System of Indefinite 

Number of Particles 
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Conservation of Momentum 
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In the absence of any net external force, 

the total momentum of a system of 

particles is conserved, although 

individual momenta may change with 

time 
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Electrodynamics 

In electrodynamics, momentum may 

not be conserved! 



Centre of Mass 
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Motion of CM 
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The centre of mass of a system of 

particles moves as though it is particle, 

carrying the total mass of the system, 

and is acted upon by the net external 

force on the system. 
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is the position of CM at t = 0 



CM 

Spring-mass system tossed into the air  



Prob. 3.3 

Suppose that a system consists of 

several bodies, and the position of the 

CM of each body is known. Prove that the 

CM of the combined system can be found 

by treating each body as a particle 

concentrated at its own CM. 



CM of sub-system 2 CM of sub-system 1 
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Prob. 3.7 

Two masses, m1 & m2 are connected by 

a spring of spring constant k and 

unstretched length L. The entire system 

is pushed against a wall so that the 

spring is compressed to length L/2. 

Mass m2 is then released at t = 0. 

Find the motion of the CM as function of 

time. 
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Prob. 2.4 

Two masses m & M respectively, 

undergo uniform circular motion about 

each other at a separation of R, under 

the influence of their gravitational 

attraction. Find the time period of 

rotation.  
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Motion observed by an Outside Inertial Observer 
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Motion of ‘m’ 

seen from ‘M’ 
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Thus, the correction due to the motion of the 

earth is a reduction in time period of the 

moon by  %62.0



Impulse and Momentum 
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Systems With Variable Mass 

1. Mass Continually Added to System : 

Loading of a moving wagon, Conveyer belts  

2. Mass Continually Leaving The System : 

Rocket, Leaking wagon 
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Change in the momentum over time      :  
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In the limit as             , the last term drops out, and  0t 
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Where,                        , is the relative velocity of 

the mass entering/leaving the system w.r.t. the 
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Prob. 3.20 

A rocket ascends from rest in a uniform 

gravitational field by ejecting exhaust. 

Speed of exhaust : u 

Rate of exhaust : dm/dt = γm   (γ < 0)                             

(m is instantaneous mass of the rocket) 

Retarding force : bmv (v is instantaneous speed 

of rocket) 

Find : velocity of rocket as function of time 



Equation of motion 
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Change of Course by a Spaceship : 
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Equation of Motion 
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Prob. 3.10 

An empty freight car of mass M starts from 

rest under an applied force F. At the same 

time sand begins to run into the car at a 

steady rate b from a hopper at rest along the 

track. 

Find the speed of the car after a mass of 

sand m has been transferred. 
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Equation of Motion             
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Prob. 3.18 

Raindrop of initial mass M0 falls from rest 

under the influence of gravity. The drop gains 

mass at a rate proportional to the product of 

its instantaneous mass and instantaneous 

velocity :  

vMk
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Show that the speed of the drop eventually 

becomes effectively constant and give an 

expression for the terminal speed. Neglect air 

resistance 
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Prob. 3.13 

A ski tow consists of a long belt of rope 

around two pulleys, one at the bottom of a 

slope and the other at the top.  

A motor drives the pulleys to move the belt 

at constant speed of 1.5 m/s. 

Length of belt : 100 m 

A skier of mass 70 kg takes the tow every 5 s. 

Find the average force required to pull the belt 
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Mass input to the tow at the bottom   
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Equation of motion of the tow 
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Example :The Water Jet Boat 
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