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Semiclassical gravity equations

Consider quantum fields in a curved spacetime, with
energy-momentum tensor Tab. Semiclassical gravity is the
approximation in which their back-reaction on the spacetime
is governed by the equations

Rab −
1

2
gabR = 8πG < Tab > .

Here, < Tab > is the expectation value of the QFT
energy-momentum tensor in the state of the QFT.

The metric is classical and the matter is quantum. The
matter could also include gravitons.
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This equation can be ‘derived’ in the following scenario from a
full theory of quantum gravity: Consider N scalar fields
coupled to gravity with coupling proportional to 1/N. Take
the N → ∞ limit keeping NG fixed.

Can also be derived in quantum gravity as the 1-loop
perturbative correction to the expectation value of the metric
in an expansion about a background classical solution.
Energy-momentum tensor can include graviton contribution.
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QFT in curved spacetime and the semiclassical approximation
has been applied to show Hawking radiation.

In this talk, we will specifically be interested in recent results
that use semiclassical gravity. This will broadly include results
where the metric is taken to be classical, and the matter
quantum.
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Generalized entropy was introduced by Bekenstein in order
that the second law of thermodynamics be valid near black
holes. For any spatial slice intersecting the horizon,

Sgen =<
A

4ℏG
> +Sout . (1)

Bekenstein proposed that Sout was the ordinary
thermodynamic entropy of matter outside the horizon. He
also proposed the Generalized second law, the statement that
the generalized entropy never decreases in time.
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What if we have quantum fields outside the horizon? What
should we take Sout to be? Sorkin (1983) pointed out it
should be the entanglement entropy −Tr(ρ log ρ) where ρ is
the reduced density matrix of the black hole exterior.
However, this has a UV divergence.

There is now a lot of evidence for the following: The leading
divergent term can be absorbed in the renormalization of the
bare Newton’s constant G and the generalized entropy is
finite and now contains the renormalized G . (Starting with
Susskind/Uglum in 1993). Here, Sent is the finite part of the
entanglement entropy.

Sgen =<
A

4ℏG
> +Sent .
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The Generalized second law (GSL) was proved by Wall (2011)
for Einstein gravity in semiclassical gravity under the
assumption of a renormalization scheme rendering various
quantities finite.

Recent developments supply such a renormalization scheme.
We will review these recent developments.
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Witten and later, Chandrasekharan, Penington and Witten
(CPW) (2022): described ‘entropy of an algebra’. They
studied the algebra of observables in the black hole exterior.

They showed that generalized entropy of (the Kruskal
extension of) the Schwarzschild black hole at its bifurcation
surface is the entropy of this algebra modulo a constant.

They also proved a version of a generalized second law for
Einstein gravity using techniques from von Neumann algebras,
specifically that the generalized entropy increases from early
to late times for asymptotically AdS black holes, if the black
hole is allowed to equilibrate in between the early and late
times. This is not quite a local GSL which would be the
statement

dSgen
dv ≥ 0.

This computation generalizes to black holes in an arbitrary
diffeomorphism invariant theory (Ali/VS, PRD 2023).
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The algebra of observables

Figure: The algebra of the black hole exterior

Consider QFT on the maximally extended Kruskal black hole
spacetime. The algebra of bounded smeared quantum field
operators in the right exterior acting on the Hilbert space is
denoted Ar ,0.
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Consider an algebra S generated by a subset of bounded
operators on a Hilbert space. If adjoints of operators in S are
also in the algebra, it is a *-algebra.

S ′, the commutant of an algebra S is the set of all bounded
operators that commute with every element of S .

A von Neumann algebra S is a *- algebra that equals its
double commutant S ′′.

The algebra Ar ,0 of quantum fields in the right exterior is a
von Neumann algebra. Its commutant is the algebra of
operators in the left exterior Aℓ,0. (Which is the largest
causally disconnected region from the right exterior)
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The algebra Ar ,0 is a Type III von Neumann algebra in the
classification of von Neumann algebras.

‘Entropy of an algebra’: Type I and Type II von Neumann
algebras have renormalizable density operators. Thus, one can
define entropy for Type I and Type II algebras by considering
the von Neumann entropy associated with the density
operator.

Type III von Neumann algebra has no renormalizable density
operators.

Renormalization is by defining a modified trace in situations
where the Hilbert space trace is infinite.
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The crossed product construction of Witten(2022)

We enlarge the algebra by adding an operator and enlarge the
Hilbert space to get states on which this extra operator acts.

Witten’s idea: Consider a low energy effective field theory of
quantum gravity - we have a matter QFT and gravitons in the
Schwarzschild background.The algebra of fields in the black
hole right exterior is Type III. We are interested in this theory
in the G → 0 limit.
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Add one more operator, the ADM Hamiltonian HR and
implement the constraint HR = ĥ + HL where

ĥ =

∫
S
dΣµV νTµν

and V is the time translation Killing field of the Schwarzschild
black hole. In Einstein gravity, ĥ = HR − HL. Actually, more
precisely, we add the operator HR −M0, where M0 is the mass
of the original unperturbed black hole. This difference is finite
in the G → 0 limit.

Expand the Hilbert space to H⊗ L2(R) where we have
included square integrable functions of the conjugate variable,
the timeshift (tL + tR) on which the extra operator acts.
Under the time translation symmetry, we have tL → tL + c
and tR → tR − c . Choose c = tR , so we can set tR to zero.
The conjugate variable is then tL.
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The operator βĥ in the QFT, is precisely the modular
Hamiltonian associated with the Hartle-Hawking state of the
QFT (Bisognano/Wichmann and Sewell). β is the inverse
temperature of the black hole. The operator generates
automorphisms of the algebra.

e i ĥsae−i ĥs ∈ Ar ,0, ∀ a ∈ Ar ,0, s ∈ R.
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Definition of the crossed product algebra

The crossed product left algebra is generated by operators

e itLĥa′e−itLĥ, e is(HL−M0), ∀ a′ ∈ Al ,0 s ∈ R.

The right algebra is generated by operators

e−itR ĥae itR ĥ, e is(HR−M0), ∀ a ∈ Ar ,0 s ∈ R.

Let us recall that here, tL is the conjugate variable to
(HL −M0) and they have a non-trivial commutation relation.

This is the crossed product by the modular automorphism
group and the resultant algebra is Type II.

By construction, the dressed operators e itLĥa′e−itLĥ commute
with the constraint ĥ + HL − HR .
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The Type II algebra has a trace, a linear functional on Ar

such that tr(âb̂) = tr(b̂â) and tr(a†a) > 0 for a ̸= 0. This is
not the Hilbert space trace, which may be infinite.

We can define a density matrix for any state of the extended
Hilbert space |Φ̂ > by

tr(ρΦ̂â) =< Φ̂|â|Φ̂ >

for all â in Ar . Here, tr is the trace just defined.

Entropy of the algebra Ar for the state Φ̂ is

S(Φ̂)Ar = −tr(ρΦ̂ log ρΦ̂) = − < Φ̂| log ρΦ̂|Φ̂ > .

For the particular Type II algebra we started out with (a
factor), tr is unique up to a scaling tr → ectr under which
S(Φ̂)Ar → S(Φ̂)Ar + c .
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We can define a density matrix for any state of the extended
Hilbert space |Φ̂ > by

tr(ρΦ̂â) =< Φ̂|â|Φ̂ >

for all â in Ar . Here, tr is the trace just defined.

Entropy of the algebra Ar for the state Φ̂ is

S(Φ̂)Ar = −tr(ρΦ̂ log ρΦ̂) = − < Φ̂| log ρΦ̂|Φ̂ > .

For the particular Type II algebra we started out with (a
factor), tr is unique up to a scaling tr → ectr under which
S(Φ̂)Ar → S(Φ̂)Ar + c .
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Chandrasekaran/Penington/Witten (CPW): For semiclassical
states |Φ̂ >, the entropy of the algebra

S(Φ̂)Ar = Sgen + C .

Here, Sgen is evaluated at the bifurcation surface B.

We showed (Mohd Ali, V.S) that a similar result holds in any
diffeomorphism invariant theory of gravity with the Area of
the horizon replaced by the Wald entropy in Sgen.
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Entropy of any subregion (Jensen/Sorce/Speranza)
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This construction was generalized by JSS to associate an
algebra entropy to any subregion of spacetime which is a
domain of dependence of some partial Cauchy slice. The
algebra of observables in this subregion is the algebra of
Einstein gravity + matter in the G → 0 limit. If we just treat
the graviton as one more quantum field, this is a type III
algebra.

JSS impose as a constraint, the Hamiltonian H generating the
flow of a particular class of diffeomorphisms on a Cauchy
slice, as the full gravity + matter theory is diffeomorphism
invariant. This class of diffeomorphisms preserve the
subregion and its causal complement. This is a generalization
of the work of CPW who imposed the generator of an
isometry as a constraint.
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These diffeomorphisms must behave like the Killing isometries of
Rindler space in the local Lorentz frame at the entangling surface.
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This constraint cannot be imposed without adding one more
degree of freedom, that of an observer. The observer is
assumed to have an energy q ≥ 0 and the observer is
associated with this subregion. The constraint that is imposed
is H + q − q′.

We need the algebra of operators that commute with the
constraint. This is given by the algebra
{e iHpae−iHp, e iqt , t ∈ R}′′. This has the structure of a crossed
product algebra.

A crucial assumption of JSS is that H (this is a local integral
on some Cauchy slice) is a modular Hamiltonian associated to
some state. Since the diffeomorphism is not an isometry, the
value of H will depend on the choice of Cauchy slice.
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If we assume H is a modular Hamiltonian of some state, then
this crossed product algebra is the crossed product by modular
automorphisms, and becomes type II.

Since the algebra is now type II, one has a trace on the
algebra, renormalized density matrices, and an entropy for the
algebra. The entropy is the generalized entropy modulo a
constant, and that depends on the area of the entangling
surface and the entanglement entropy of the partial Cauchy
slice.
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The crucial assumption of JSS is that H is a modular
Hamiltonian for some state. This is hard to check since
modular Hamiltonians are hard to compute. Further, modular
Hamiltonians are generically non-local (i.e., are not written as
an integral over a Cauchy slice).

However, there is one instance when the assumption of JSS is
exactly true. That is when the subregions are specific wedges
in black hole spacetimes.
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The modular Hamiltonian (of the vacuum) for each such wedge
can be computed.
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A local GSL in crossed product constructions (Mohd Ali,
V.S, 2024)

This modular hamiltonian is the generator of the flow of a
vector field which obeys the JSS conditions in the wedge.
Hence we can use the JSS construction.

We use the relative entropy of two states in the type II algebra
which is finite. We can show that for semiclassical states, this
is the same as the relative entropy in the type III algebra. The
observer degrees of freedom cancel out in the relative entropy
in each wedge.
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The relative entropy is monotonic, consider the wedge at v ∗ ∗
which is contained in the one at v∗,

Srel(Φ||ΩHH)(v∗)− Srel(Φ||ΩHH)(v ∗ ∗) ≥ 0.

Using this, we can show Sgen(v ∗ ∗) ≥ Sgen(v∗) for all
v∗∗ ≥ v∗ ≥ 0. This is a local GSL.
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Open questions

Our proof of the GSL is valid for stationary black hole Killing
horizons. What about more general dynamical horizons?

Is there some monotonic ‘entropy’ and a GSL away from the
semiclassical approximation (Kirklin, 2024)? Is the monotonic
quantity the algebra entropy and can it be computed away
from the semiclassical approximation?
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An algebraic description of the information loss problem
(van der Heijden, Verlinde, 2024)

From the work of Page, we know that for an evaporating
black hole, if we throw a diary into the black hole before the
Page time, the information of the diary does not come out
before the Page time.

As described by Hayden/Preskill, if we wait until after the
Page time to throw the diary into the black hole, the
information in the diary comes out almost immediately in the
Hawking radiation.

Recently, the information recovery protocol has been
described in the language of von Neumann algebras. How is
there a transition from the Type I description to the emergent
spacetime Type III description?
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Thank you!
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